Hi!

I'm a second year graduate student in the Linguistics department at the University of Maryland, College Park where I'm also part of the Language Science Center. Broadly, I'm interested in meaning, its acquisition, and the relationship between linguistic and conceptual structure. With tools from formal semantics, psycholinguistics, and psychophysics, I'm looking into the lexical specifications and acquisition of quantifiers, as well as how they interface with extralinguistic cognition. I'm advised by Jeff Lidz and Paul Pietroski.

Research

First- and Second-order Quantifiers: Proportional quantifiers like most require second-order logic, but others -- like each, every, and all -- are expressible using the tools of first-order logic. So, how are they in fact represented in speakers' minds? With Jeff Lidz, Paul Pietroski, and Justin Halberda, I'm developing a set of experimental diagnostics that try to answer this question. The idea is that all else (task, participant, truth-conditions) equal, preferences for individual- or set-based verification strategies reflect underlying first- and second-order representations, respectively. For example, participants use an individual-based strategy to evaluate a statement like "each of the big dots are blue" but switch to a set-based strategy when evaluating a statement like "all of the big dots are blue". We think a change in representational format (first- vs. second-order) is to blame.

More & Most: Relatedly, we've been looking at how the meanings of more and most bias different visual search and memory encoding strategies in adults and kids. One upshot is that when evaluating statements like "more of the dots are blue", people attend to and represent the focused (blue) and non-focused (non-blue) sets. When evaluating statements like "most of the dots are blue", on the other hand, people attend to and represent the focused set (blue dots) and the superset (dots). In displays with only two colors, this is a sub-optimal strategy since it introduces more noise into the number estimates than the simple direct comparision would. This has consequences not only for correctly evaluating the sentence, but also for how well participants remember seemingly incidental information, like each sets' center of mass. With Athena Wong, we've extended these predictions to the Cantonese determiners daai-do-sou ("majority") and zeio-do ("largest subset").

Event Concepts & Verb Learning: I'm working with Laurel Perkins, Alexander Williams, and Jeff Lidz to identify events -- like x taking y from z -- that infants view under a 3-participant concept but that adults often describe with transitive clauses like "The girl took the truck". The ultimate goal is to better understand how learners relate the arguments in a given clause to the participants in the event it describes. And eventually, to give an account of how they use this information to acquire verb meanings.

Pre-UMD: Before coming to Maryland I studied Cognitive Science at Johns Hopkins. I was fortunate enough to work with Justin Halberda on a number of projects, some of which were related to the Approximate Number System and its interface with language. I also had the opportunity to work with Akira Omaki on a project investigating the relationship between working memory and parsing.

Posters

Knowlton, T., Wong, A., Halberda, J., Pietroski, P., and Lidz, J. (2018) Different Determiners, Different Algorithms: Two Majority Quantifiers in Cantonese Bias Distinct Verification Strategies. 31st CUNY Conference on Human Sentence Processing, UC Davis. 

Knowlton, T., Halberda, J., Pietroski, P., and Lidz, J. (2017) Sentences, Centers, and Sets: Set Selection and the Meanings of More and Most. Cognitive Development Society (CDS) 10th biennial meeting, Portland, OR. 

Knowlton, T., Halberda, J., Pietroski, P., and Lidz, J. (2017) Distinguishing First- from Second-order Specifications of Each, Every, and All. Seventh Mid-Atlantic Colloquium of Studies in Meaning (MACSIM), Georgetown. 

Knowlton, T., Halberda, J., Pietroski, P., and Lidz, J. (2017) Set Selection and Storage Reflect Differences in Quantifier Meanings. McDonnell Network Plenary Workshop on “The Ontogenetic Origins of Combinatorial Thought”, UCSD. 

Perkins, L., Knowlton, T., Hirzel, M., Dudley, R., Williams, A., and Lidz, J. (2017) Linguistic and Conceptual Structure in Verb Learning. McDonnell Network Plenary Workshop on “The Ontogenetic Origins of Combinatorial Thought”, UCSD. 

Knowlton, T. and Omaki, A. (2016) The Parser's Dilemma: Memory vs. Grammatical Constraints in Sentence Processing. PURA poster session, Johns Hopkins. 

Contact Info

  • Email

    tzknowlt@umd.edu
  • Address

    1413H Marie Mount Hall
    7814 Regents Drive
    College Park, MD 20742